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Confidence Intervals 

In this section we derive equations for extreme values of ( )γθg  for a linearized form of 
 given by equation 8. These equations become iteration equations to solve the nonlinear 

problem. 
( λ,θL )

)First, we linearize  and (γθg ( )γθf  using a truncated Taylor series around parameter set 
 obtained at the rth iteration: rθ

 
 ( ) ( ) ( )rrr ggg θθDγθγθ −+≈ , (A-1) 
 
 ( ) ( ) ( )rrr θθDfγθfγθf −+≈ , (A-2) 
 
where subscript r indicates evaluation using . Second, we take derivatives of  written 
using equations A-1 and A-2 and set the results to zero to obtain  

rθ ( λ,θL )

 
 ( ) ( )( )rrrrr g γθfYωfDDθθωDffD −′+′λ=−′ , (A-3) 
 
 ( ) ( )θθ ˆ2 SSd −=α . (A-4) 
 
Third, we write  using equation A-2, then substitute ( )θS rθθ −  from equation A-3 into the 
result to get  
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  (A-5) 
( )( )( ) ( ) ( )( )( ) 

 

Fourth, we put equation A-5 into equation A-4 and solve for λ to get  
 

  (A-6) 
 

To obtain the solution for the (r+1)th iteration, we write equations A-6 and A-3 in the forms 
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and 
 

 ( ) ( ) ( )( )rrrrrrrrrr g γθfYωfDωDffDDωDffDθθ −′′+′′λ+= −−
++

11
11 . (A-8) 

Prediction Intervals 

Extreme values of  are derived using the same general method as used for 
. First, we use equations A-1 and A-2 in equation 19 and take derivatives with respect to 

. Then we set the results to zero to obtain 

( ) vg +γθ
( )γθg

λ and , , vθ
 

 ( ) ( )( )rrrrrr g γθfYωfDDθθωDffD −′+′λ=−′ , (A-9) 
 
 λ=ω vp , (A-10) 

 

 ( ) ( ) 22 ˆ vSSd pω+−=α θθ . (A-11) 

 
Second, we use equations A-5 and A-10 in equation A-11 to get 
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from which  
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Iteration equations are obtained directly from equations A-12, A-10, and A-9 and have the form 
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and equation A-8. 
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